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Abstract. Firms are increasingly interested in developing targeted interventions for cus-
tomers with the best response. This requires identifying differences in customer sensitiv-
ity, typically through the conditional average treatment effect (CATE) estimation. In
theory, to optimize long-term business performance, firms should design targeting poli-
cies based on CATE models constructed using long-term outcomes. However, we show
theoretically and empirically that this method can fail to improve long-term results, par-
ticularly when the desired outcome is the cumulative result of recurring customer actions,
like repeated purchases, due to the accumulation of unexplained individual differences
over time. To address this challenge, we propose using a surrogate index that leverages
short-term outcomes for long-term CATE estimation and policy learning. Moreover, for
the creation of this index, we propose the separate imputation strategy, designed to reduce
the additional variance caused by the inseparable nature of customer churn and pur-
chase intensity, prevalent in marketing contexts. This involves constructing two distinct
surrogate models, one for the observed last purchase time and the other for the observed
purchase intensity. Our simulation and real-world application show that (i) using short-
term signals instead of the actual long-term outcome significantly improves long-run
targeting performance, and (ii) the separate imputation technique outperforms existing
imputation approaches.

History: Catherine Tucker served as the senior editor for this article.
Supplemental Material: The online appendices and data files are available at https://doi.org/10.1287/
mksc.2022.0379.
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1. Introduction

Recent advancements in business experimentation com-
bined with machine learning have transformed how
companies execute targeted interventions. Through
controlled experiments, businesses can infer causal rela-
tionships between their marketing offerings and custo-
mers’ responses. Rather than simply measuring the
average impact across all customers, companies can fur-
ther identify differences in customer sensitivity based
on individual characteristics, commonly quantified as
the conditional average treatment effect (CATE). This
approach empowers firms to focus on customers pre-
dicted to respond most favorably to their objectives
(e.g., profits or purchases), particularly those with the
highest predicted CATEs. This method has gained sig-
nificant popularity among organizations to design effec-
tive targeted intervention, and some tech companies,
such as Microsoft (Oprescu et al. 2019) and Uber (Chen
et al. 2020), have taken a step further by open sourcing
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their tools for CATE estimation. This has enabled more
companies to adopt this approach and develop highly
precise targeted marketing interventions at scale.

This test-to-target approach has proven effective in
various marketing contexts, such as customer retention
(Guelman et al. 2012, Ascarza 2018, Lemmens and
Gupta 2020), membership subscription (Simester et al.
2020, Yoganarasimhan et al. 2023), and catalog mailing
purchases (Hitsch et al. 2023). Despite its popularity, it
remains untested whether this approach can effectively
optimize long-term outcomes, such as customer life-
time value (CLV) or repeated purchases, which are typ-
ically the top-line metrics for a firm. In theory, the
observation window should not alter the way firms
optimize their resource allocation—If the business goal
is to maximize long-run outcomes, firms should target
customers based on their long-term sensitivity to the
intervention, measured as the CATE of the intervention
on the long-term business outcome.
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However, our research shows that the conventional
test-to-target approach can be ineffective at optimizing
long-term outcomes, especially those driven by recur-
ring customer behaviors, such as total purchases over an
extended postintervention period. Unlike short-term
outcomes (e.g., immediate purchases after the inter-
vention), long-term outcomes accumulate individual
customer behaviors, such as unobserved heterogeneity
or unexplained customer attrition, that cannot be ex-
plained by the observed customer characteristics col-
lected before the intervention. As a result, long-term
outcomes not only carry information about the treat-
ment effect (which is what CATE models aim to cap-
ture), but also accumulate unexplained variations that
grow over time. This presents a significant and under-
studied challenge in CATE estimation, as existing mod-
els may generate unstable and high-variance CATE
predictions when unexplained variations are large. Tar-
geting customers based on such high-variance models
can result in an ineffective targeting strategy when opti-
mizing for long-term outcomes.

This paper has two main objectives. First, we exam-
ine the challenge of estimating CATEs for long-term,
recurrent customer behaviors. Our theoretical analysis
shows that such outcomes can accumulate unexplained
variations due to unobserved heterogeneity or customer
attrition. Consequently, as we extend the observation
window, the outcome variance—and by extension, the
variance of most CATE models—tends to rise. This
increased variance inadvertently heightens the likeli-
hood of incorrect targeting. Second, we present a solu-
tion that enables firms to implement more effective
targeted interventions and achieve better long-term
performance. We recommend that firms create a noise-
reduced proxy based on immediate postintervention
behaviors and use this proxy for CATE estimation
instead of the actual long-term outcome. Although it
may seem counterintuitive, this method can potentially
minimize unexplained variations and effectively cap-
ture long-term treatment effects that are reflected in
short-term behavioral changes.

To construct this noise-reduced proxy, we adopt the
surrogate index approach (Athey etal. 2019a, Yang et al.
2023), which uses historical data that is readily avail-
able to firms to infer the relationship between short-
term behaviors and the long-term outcome. In addition
to providing valid CATE estimation, we formally show
that the surrogate index has smaller unexplained varia-
tions than the actual long-term outcome, leading to
more accurate CATE estimation. This enables firms to
effectively target customers based on their long-term
sensitivity to the intervention while mitigating the
noise accumulation problem.

We emphasize that the conventional method of sur-
rogate index construction, as recommended by Athey
and Wager (2019) and Yang et al. (2023), may not be

optimal in scenarios with customer attrition. In the
presence of attrition, long-term repeated behaviors
become the product of two critical variables: the dura-
tion of a customer’s lifetime and the intensity of these
behaviors during that lifetime. As both these variables
are influenced by short-term behaviors and idiosyn-
cratic variations in each period, the conventional
modeling approach fails to identify the correct rela-
tionship between short-term and long-term outcomes
(Brown 1983, Hoderlein and Mammen 2009, Su et al.
2019).

To address this issue, we propose a novel separate
imputation technique. Our approach involves develop-
ing two separate models using historical data: one to
predict the time of a customer’s last observed purchase
(i.e., the proxy for lifetime) and another to predict the
average purchases per period when a customer is still
active. We then combine the predictions of both models
to estimate expected future purchases. This approach
stands out from other surrogate models by effectively
mitigating the issue of increased variance that arises
from the inseparable nature of customer attrition and
purchase intensity. Consequently, this technique enables
firms to construct more accurate and robust surrogate
indices, leading to improved CATE estimation and more
effective targeting strategies for optimizing long-term
outcomes.

Through simulation analyses and a real-world mar-
keting campaign, we demonstrate that our proposed
approach is significantly more effective than relying on
the actual long-term outcome. Specifically, we show
that targeting rules based on immediate, short-term
signals—either directly from short-term outcomes or
through surrogate indices—consistently yield better
results than those using CATE models estimated using
the long-term outcome. This is surprising because it
suggests that, for optimal long-term performances,
firms should rely on short-term outcomes and histori-
cal information rather than on the long-term outcomes
themselves. Furthermore, we demonstrate that our
separate imputation approach achieves the best target-
ing performance. In the real-world application, target-
ing customers using the proposed solution yields a 6%
increase in profits (compared with directly rolling out
the best action to all customers), while targeting based
on the long-term outcome results in a 3% profit loss.

There are several compelling reasons for firms to
implement our proposed solution. First, it uses exist-
ing historical data, obviating the need for new experi-
mental data to reduce variance. This benefit translates
into cost savings, as firms can bypass the expenses
associated with expanding experimental samples. Sec-
ond, the solution integrates seamlessly with standard
machine learning algorithms and existing software
packages, facilitating a swift and effective deployment
geared toward higher profits. Third, it is applicable to
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a wide variety of business settings, including retailers,
e-commerce, apparel, and nonprofit organizations. Last,
our method expedites decision-making processes. Firms
no longer have to endure the typical delays associated
with waiting for long-term outcomes, thereby accelerat-
ing the implementation of targeted interventions (Athey
etal. 2019a, Yang et al. 2023).

Our research contributes to the literature in four
strands. First, we address practical challenges in design-
ing and implementing targeting policies. We under-
score the limitations of current best practices (Ascarza
2018, Simester et al. 2020, Ellickson et al. 2022, Yoganar-
asimhan et al. 2023), particularly in their ineffectiveness
for optimizing noisy long-term outcomes. We contrib-
ute to this literature by proposing a new targeting para-
digm where firms reduce noise in the outcome variable
before estimating any CATE model. Although ignoring
the actual outcome of interest may seem counterintui-
tive, we demonstrate how creating the “right” proxy
using the surrogate index approach with proper impu-
tation methods results in more effective targeting.

Second, our work highlights a significant challenge
in estimating the CATE and effective targeting in sce-
narios characterized by a low signal-to-noise ratio. Con-
siderable research has been dedicated to developing
methods for CATE estimation (Imai and Strauss 2011,
Imai and Ratkovic 2013, Guelman et al. 2015, Grimmer
et al. 2017, Chernozhukov et al. 2018, Athey et al. 2019b,
Kiinzel et al. 2019, Nie and Wager 2021, Kennedy 2023)
and policy learning (Manski 2004, Kitagawa and Tete-
nov 2018, Athey and Wager 2021, Mbakop and Tabord-
Meehan 2021). To the best of our knowledge, this paper
is the first to theoretically explore how unexplained var-
iations affect the predictive accuracy of CATE models
and their targeting performance. Moreover, we incor-
porate behavioral insights from marketing literature to
illustrate why the issue of high noise is common in
many marketing contexts. Our study provides impor-
tant insights into the limitations of existing CATE mod-
els and highlights the need for robust solutions to
estimate CATEs.

Third, we contribute to the literature on statistical sur-
rogacy and long-term treatment effect estimation (Pren-
tice 1989, Athey et al. 2019a, Qian et al. 2021, Imbens et al.
2022, Yang et al. 2023). This literature has traditionally
assumed that firms use short-term signals because of the
cost of waiting to observe long-term outcomes. We fur-
ther demonstrate, using formal theory and empirical evi-
dence, the value of leveraging short-term proxies even
when the actual long-term outcome is observed. More-
over, past research has primarily constructed surrogate
indices using standard regression models, whereas our
work highlights the importance of considering the data
generating process for surrogate indices construction.

Last, our work contributes to the literature on treat-
ment effect estimation for low-sensitivity experiments

(i.e., experiments with outcome variance much larger
than the treatment effect). Our approach differs from
previous research (Deng et al. 2013, Guo et al. 2021, Jin
and Ba 2023) in a critical way—We do not reduce vari-
ance by eliminating variations that can be explained by
customer observables. Instead, we advocate for the use
of information explainable by short-term signals and
pretreatment covariates for CATE estimation and tar-
geting. This strategy is pivotal, as it targets the core
issue of high variance in CATE estimates arising from
unexplained variations, rather than from the observ-
able heterogeneity among customers.

2. Data and Motivation

We use a field experiment from a retail technology com-
pany in Taiwan to highlight the challenges of targeting
with the goal of maximizing repeated purchases over
an extended period of time. This company manages a
network of self-service vending machines at various
locations within a city. Customers can grab food and
beverages from a vending machine, and the machine
automatically counts the items using Radio Frequency
Identification technology and charges the customers
through their preregistered payment methods. The
company uses a third-party messaging platform (like
WhatsApp) to manage customer profiles and send mar-
keting messages. To use this service, customers must
join the company’s messaging app channel and register
their payment methods through the messaging app.

2.1. Marketing Intervention

As part of the customer activation process, the company
sends a 15% discount coupon to every new customer fol-
lowing their first purchase. The coupon is automatically
applied to the next purchase made within 14 days, after
which it expires. The company considered offering addi-
tional coupons to some newly acquired customers, but
only if doing so would increase their total purchases in
the subsequent months. To develop a targeted approach,
they conducted a randomized controlled experiment to
identify customers who would increase their purchases
as a result of such an intervention.

In the experiment, the company randomly assigned
customers who had just made their first purchase to one
of two groups: a control group (W;=0) that received
one coupon (i.e., the “business-as-usual” case) or a treat-
ment group (W;=1) that received three coupons. All
coupons offered a 15% discount and expired after
14 days. The experiment included 1,853 customers, with
889 assigned to the treatment group and 964 to the con-
trol group. The company collected several pretreatment
covariates on customers to design personalized inter-
ventions, such as acquisition channels and informa-
tion about their first purchase. (Further details on these
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covariates and randomization checks can be found in
Table 2 in Section 6.)

2.2. Average Treatment Effect on Repeated
Purchasing Behaviors

Before delving into customer-specific impacts, we first
assess the average treatment effect of the intervention
on overall customer purchases. In the week immedi-
ately after the intervention, the total number of pur-
chases, represented as Y; 1, increase by 10% over the
control group, but this effect is not statistically signifi-
cant (p=0.62). When we extend the observation horizon
to 10weeks,! the average treatment effect on 10-week
purchases (denoted as Y 19) is 0.3153 (with p=0.03), cor-
responding to a 30% increase (where the control group
had an average of Y; 19 of 0.99). Clearly, the company’s
intervention had a long-lasting impact on repeated cus-
tomer purchases, whereas the short-term impact was
relatively small.

To gain deeper insights into the intervention’s effects
on repeated purchasing behaviors, we further investi-
gate the differences in customer attrition and purchase
frequency between the two treatment groups condi-
tional on being “alive” (Figure 1). The leftmost figure
illustrates the percentage of “alive” customers, defined
as those making a purchase in a given week or after-
ward (up to 50 weeks after their initial purchase). The
data suggests that the intervention reduced customer
churn, with the treatment group consistently exhibiting
higher percentages of “alive” customers than the con-
trol group. The rightmost figure in Figure 1 shows the
weekly average number of purchases per active cus-
tomer. For the first seven weeks, retained customers in
the treatment group made more purchases on average
than those in the control group.

2.3. Designing Targeted Interventions Through
CATE Estimation

The primary objective of the focal firm was to identify

customer segments with the most favorable responses

to the intervention with the goal of exclusively target-
ing these segments in future activation campaigns.
With this in mind, the company aims to create a treat-
ment prioritization rule, optimizing outcomes through
targeted treatment assignments (Athey 2017, Ascarza
2018, Hitsch et al. 2023). We now demonstrate how the
firm can use the experiment to achieve this aim.

Let’s begin by examining a scenario where the focal
firm’s goal is to maximize customer purchases within
the first week postintervention (i.e., Y; 1). This approach
aligns with prevalent coupon targeting literature (Dubé
etal. 2017, Gubela et al. 2017), where the primary aim is
enhancing immediate purchases after the intervention.
To identify which customers should be offered addi-
tional coupons, we construct a CATE model for Yj ;.
Specifically, this model is designed to estimate the
quantity 7y, (X;) =E[Y;1(1)|X:] — E[Y;,1(0)[X;], where
Y; 1(W;) is the potential outcome (Rubin 1974) of cus-
tomer i’s first-week purchase given the treatment con-
dition W;, and X; includes the pretreatment customer
covariates mentioned previously.

To evaluate the model’s performance, we apply a
bootstrap validation method similar to that used in
Ascarza (2018) (see Section 6.3 for details). Briefly, we
first estimate a CATE model using the training set and
predict CATEs for the validation customers. We then
sort validation customers based on their predicted
CATEs and group them into quintiles, with Q; contain-
ing customers with the highest predicted CATEs (i.e.,
those who are predicted to increase purchases the most
because of the intervention), and Qs containing those
with the lowest predicted CATEs. Finally, we evaluate
the model’s ability to identify the “right targets” by
computing the group average treatment effect (GATE) for
each quintile. We compute two measures: (i) the pre-
dicted CATEs (Prediction) and (ii) the actual outcome
Y; 1 (Data).

Figure 2 presents the predicted vs. actual GATEs for
customers in the validation data set.”> The closeness
between predicted and actual GATEs indicates the

Figure 1. (Color online) Percentage of Alive Customers and Average Weekly Purchases After the Intervention

% Customers Still Alive After Week X
44%

40%
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Week Since Intervention

< Treatment - Control

Weekly Purchase Counts Per Alive Customer
0.5

0.4

0.3

Weekly Purchase Counts
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Week Since Intervention
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Note. Customers are labeled as “alive” if they made at least one purchase in that week or later (up to week 50).
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Figure 2. (Color online) Predicted and Actual GATEs by Pre-
dicted CATE Levels When the Outcome Variable Is Y;

0.05

S 002
H # Data
w 4 Prediction
2 000
o
-0.02

Q1 Q2 Q3 Q4 Q5
Group by Predicted CATE on Y; 4 (High & Low)

Notes. Groups Qy,...,Qs are categorized based on the decreasing
order of treatment effects predicted by the CATE model for Y.
Hence, the predicted GATEs (triangles line) are monotonically de-
creasing by definition. Actual GATEs (circles line) are computed from
Y; 1. For example, the predicted and actual GATE on Y; for Q; are
0.046 and 0.038, respectively.

CATE model’s accuracy in estimating the true treat-
ment effect. Specifically, the target segment recom-
mended by the model (Q;) includes customers for
whom the intervention was the most beneficial (with
an the actual GATE of 0.037, four times the ATE),
whereas the do-not-touch segment (Qs) includes custo-
mers for whom the intervention did not generate addi-
tional purchases (with an actual GATE of —0.0196).
This suggests that the model can effectively rank custo-
mers according to their responsiveness to the interven-
tion, enabling the firm to design targeted policies that
maximize customer transactions within one week fol-
lowing the intervention.

However, the firm’s primary goal is to stimulate pur-
chases across a longer time frame, particularly in the
10 weeks following the intervention, rather than merely
increasing immediate purchases. In theory, the same
targeting approach should be applicable, with the
only difference being the use of Y; 19 as the outcome for
estimating CATEs, that is, 7y, (Xi) =E[Y}10(1)|X:] —
E[Y;10(0)|X;], and comparing predicted and actual
GATEs. Therefore, we replicate the same analysis, this
time using the total purchases made within the 10 weeks
following the intervention as the dependent variable.

Figure 3 presents the predicted vs. actual GATEs on
Y 19 for the validation customers. The U-shaped trajec-
tory of the actual GATEs underscores the inability of
the CATE model to accurately rank customers by their
treatment effects on Y; 1. For instance, if the company
chooses to target customers within Q; (those antici-
pated to show the strongest effect), the actual uplift
from targeting this segment would be an increase of
0.41 purchases, contrasting the 0.58 predicted by the
model. This divergence is even more apparent for cus-
tomers predicted to benefit the least from the treatment
(those in Qs). Although the model predicts zero impact

Figure 3. (Color online) Predicted and Actual GATEs by Pre-
dicted CATE Levels When the Outcome Variable Is Y; 19

0.6
°
5= 0.4
s # Data
= 4 Prediction
< 0.2
o
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Q1 Q2 Q3 Q4 Q5
Group by Predicted CATE on Y; 4o (High <> Low)

Notes. Groups Qy,...,Qs are categorized based on the decreasing
order of treatment effects predicted by the CATE model for Y 1o.
Actual GATE:s (circles line) are computed from Yj, 1.

for this group, in reality, targeting them would result in
an uplift of 0.63 purchases, notably outperforming the
outcome of targeting Q;. Consequently, targeting strat-
egies based on this CATE model would be ineffective.

Why does the test-to-target approach succeed for
optimizing short-term outcome (Y; 1) but struggle with
long-term outcome (Y 19)? Is this a general phenome-
non that extends beyond this particular example? If
50, how can marketers design targeted interventions
to optimize long-term outcomes? We address these
questions in the remaining of this article. Section 3
examines common consumer behaviors that drive the
accumulation of unexplained variations and analyzes
their consequences for CATE estimation and targeting
when optimizing long-term outcomes. Section 4 intro-
duces a general solution that uses the less noisy short-
term behaviors to predict the long-term treatment
effect while reducing unexplained variations, along
with the proposed strategy to address customer attri-
tion. In Section 5, we validate our solution through
simulation analyses and explore the trade-off between
information gain and noise accumulation. We demon-
strate the superiority of our approach in a real-world
marketing campaign in Section 6. Finally, we conclude
in Section 7 and suggest several research directions for
future work.

3. Problem: Unexplained Variations in

Long-Term Repeated Purchases
The difficulty of targeting for long-term outcomes
arises from two interrelated issues. First, long-term
outcomes—particularly those involving repeated con-
sumer interactions—tend to have high levels of un-
explained variation due to the accumulation of
unexplained customer behavior. Second, this noise
accumulation problem can significantly undermine the
precision of popular CATE models, resulting in sub-
optimal targeting approaches. Our theoretical analysis
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formalizes and generalizes this problem by examining
two critical aspects: (i) identifying when and why the
unexplained variance for long-term outcomes increases
as the observation window expands and (ii) understand-
ing the impact of noise accumulation on the accuracy
of state-of-the-art CATE models and the consequent tar-
geting performance. (Detailed proofs of all theoretical
results are available in the Online Appendix A.)

3.1. Characterizing Long-Term Repeated Pur-
chasing Outcomes

We examine a particular type of outcome variable: the
cumulative sum of recurring behaviors over time. Such
outcomes are commonly observed in marketing, rang-
ing from repeated transactions in retail companies, to
total engagement time for social media platforms, and
customer lifetime value for Software-as-a-service
businesses. For illustration throughout this paper,
let’s take the example of a retail company aiming to
maximize total purchases over T periods. The firm
plans to achieve this by targeting a marketing inter-
vention, like distributing additional coupons to speci-
fic types of customers. Let W;€{0,1} denote the
treatment assigned to customer 7, and let X; represent
the pretreatment covariates used for determining this
assignment. The total purchases made by customer i
over T periods is represented by Y; r. This is equiva-
lent to the aggregate of transactions across all periods,
expressed as Y;r(W;) = Zthl Si+(W;). Here, S;:(W;)
denotes the purchases by customer i in period t given
the treatment W,.

Our first objective is to investigate how the unex-
plained variations in Y; r(W;)—specifically the varia-
tion in Y; t(W;) that cannot be attributed to X; and W—
evolves as T increases. To achieve this, we break down
the long-term outcome in the following manner:

T T
Yir(W) =Y B[S (W)Xl +Y €7,
t=1 t=1

N~

Y
= T

=E[Y;, (W) [Xi]

where E[S; (W;)|X;] is the expected purchases in
period t for customer 7 given treatment W; and covari-
ates X;, and ¢}, represents the mean-zero unexplained
variations of purchases in period t. Then, the variance
of unexplained variations in the outcome of interest is
given by

T T
Var[e}/T] = Var Z eft = ZVar[sft]
=1 =1
S .S
+2 Z Covlel,, €71

1<ti<tr <T

This decomposition reveals that when there is nonneg-
ative serial correlation in the per-period unexplained

variations (specifically, when Covl[e?, , €7, ] > 0 for any

t; < t; < T), the variance of these unexplained varia-
tions in Y; 1 increases with the length of the observation
period T. We next argue that common factors in mar-
keting contexts, such as unobserved heterogeneity and
customer attrition, often lead to positive serial correla-
tion in these unexplained variations (Guadagni and
Little 1983, Fader and Lattin 1993, Roy et al. 1996). Con-
sequently, the existence of these factors in customer
behavior typically results in a progressive accumula-
tion of noise over time.

3.1.1. Unobserved Heterogeneity. When there are var-
iations in customers’ intrinsic preference toward the
company—commonly known as unobserved heterogene-
ity or individual fixed effects—positive serial correlation
in unexplained variations arises (Jones and Landwehr
1988, Gonul and Srinivasan 1993). To illustrate that,
assume that the unexplained variation in each period
can be expressed as

Sft =& + ﬂfw

where &7 represents the time-invariant individual pur-
chase tendency (that is not captured by X;), and 77,
denote the independent per-period shock that is inde-
pendent of €. Then, the serial correlation of &7, is posi-
tive because

Cov[eft1 , eftz] = Var[Ef] + COV[EiS, nftl] + Cov[?f, ’7§t2]

+ Cov[nftl,nftz] = Var[?is] > 0.

This result emphasizes that, when observable characteris-
tics (X;) are insufficient to capture customer heterogeneity
in the long-term outcome, the unexplained variations will
exhibit positive serial correlations over time.

3.1.2. Customer Attrition. Also known as customer
churn, customer attrition represents the progressive loss
of customers over time. This phenomenon exits in many
business contexts and has been extensively analyzed in
the context of recurring purchase behaviors and cus-
tomer relationship management (Schmittlein et al. 1987,
Fader et al. 2005, Neslin et al. 2006, Ascarza et al. 2018b,
Bachmann et al. 2021). In the following discussion, we
demonstrate how customer attrition, whether observed
or latent, results in a positive serial correlation in unex-
plained variations.

To get the intuition why customer attrition implies
positive serial correlation, let’s first consider the sce-
nario where a customer churns in period ¢. In such a
case, all future unexplained variations for this customer
would be negative, given that their actual purchases
reduce to zero. Conversely, if a customer remains active
at time t, the unexplained variations from all earlier
periods for this person would likely skew positive. This
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occurs because the expected per-period purchases across
all customers (comprising both churned and active indi-
viduals) tend to be lower than the realized purchases of
a customer who remains active. Therefore, we can infer
that the unexplained variation in per-period purchases
exhibits positive serial correlations.

To formally demonstrate that customer attrition
causes positive serial correlation of unexplained varia-
tions, we need to unpack the dynamics of how cus-
tomer attrition affects ¢7,. When a customer is still
“alive” in period t, the actual purchase for that period
might diverge from the expected purchase, and we
denote this deviation as 777 ,. For simplicity, let's assume
these deviations are independent across distinct periods
(i.e., there is no unobserved heterogeneity). Conversely,
for a customer who has churned in period ¢ (or before),
the unexplained variation is the negative expectation of
their purchase in that period, that is, —E[S; ;(W;)|Xi].
Consequently, the unexplained variation for period t
can be expressed as

efl ; = 1[i remains active at t]nft
— 1[i has churned at ] - E[S; :(W;)|X;].

Given this formulation, the expected value of ng ; is pos-
itive, ensuring that E[¢7,] = 0. This is consistent with
the earlier intuition: Because the expected short-term
purchase, denoted as E[S; (W;)|X;], is an average taken
across both alive and churned customers, it follows
that the expected purchase from an “alive customer”
should surpass this average.

Proceeding to the correlation dynamics, we show in
Online Appendix A.1 that the covariance between the
unexplained variations for periods f; < f; is

Cov[ef,tl, eftz]
= [1— 0, (Wi X)HELS, ., (W) IXi] + El1f, 1}
X 61, (Wi X){E[S;, (W) [ Xi] + E[n] 1} 20, (1)

where 9;(W;|X;) denotes the probability that the cus-
tomer is still alive at t. Essentially, this covariance
represents the comovement attributed to customer
attrition at time #;, as it is the product of (i) the likeli-
hood of customer churn at t; multiplied by the
expected impact if the customer churns at this time
(ie., [1— O, (Wil X)HELS, 1, (W) |X,] + El5, 1)), and (ii)
the probability of the customer remaining active at t,
combined with the expected purchase when alive at ¢,
(i.e., Gtz(Wi |Xi){E[S,'/t2(Wj) |X,] + E[T}ftz]}) Given that
every term in (1) is nonnegative, the resulting covari-
ance is also nonnegative.

3.1.3. Other Customer Behaviors. Certainly, other be-
havioral factors can also contribute to positive (or neg-
ative) serial correlation. For instance, the presence of

state dependence, habit persistence, and psychological
switching costs can lead consumers” past consumption
to positively influence their future consumption (Roy
et al. 1996, Keane 1997, Seetharaman 2004, Dubé et al.
2010). Under such circumstances, a notable increase in
previous purchases can boost subsequent purchases,
resulting in positively correlated unexplained variations.
Conversely, in settings where consumers exhibit stock-
piling behavior (Tulin et al. 2002), there might exist a neg-
ative correlation between unexplained variations across
different periods. It will depend on whether the strength
of the stockpiling behavior is stronger than that of the
unexplained variations driven by unobserved heteroge-
neity and attrition.

To summarize, the degree of noise accumulation is
determined by two main factors: (i) the presence and
significance of behavioral drivers in the data set and
(ii) the effectiveness of using observable characteristics
to predict these drivers. For instance, if the observable
characteristics fail to comprehensively capture custo-
mers’ inherent preferences toward the company, this
can lead to a significant accumulation of unexplained
variations in long-term outcomes. Similarly, in situa-
tions where customer attrition is prevalent, the unex-
pected churn can lead to significant shocks in total
purchases, resulting in increased unexplained varia-
tions in the long-term outcomes.

In our empirical application, we expect to have unob-
served heterogeneity since the information from the ini-
tial purchase is unlikely to account for all the variation
in individual preferences. Besides, Figure 1 demon-
strates significant customer attrition, contributing to the
accumulation of unexplained variation due to unpre-
dictable churn. Moreover, stockpiling is unlikely in this
context given the perishable nature of the goods sold in
their vending machines. Taking all these factors into
consideration, the focal firm is indeed facing the prob-
lem of increasing noise in their outcome of interest (i.e.,
long-term total purchases) as they increase the observa-
tion window. We present evidence supporting noise
accumulation and positive serial correlation of unex-
plained variations in Section 6.2.

3.2. Implications for CATE Estimation
and Targeting

The second objective of our theoretical analyses is to
examine how noise accumulation in the outcome vari-
able impacts the predictive accuracy of CATE models
and their effectiveness in targeting. Within this context,
we establish two key results: first, the variance in pre-
dicted CATEs escalates with increasing unexplained
variations; and second, as this variance grows, the like-
lihood of making incorrect targeting decisions also
increases.

In our analysis, we assume the firm has conducted
a randomized controlled experiment such that the
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complete randomization, overlap, and no interference
assumptions hold (Imbens and Rubin 2015). Addition-
ally, we focus on a broad spectrum of CATE models, as
detailed in Assumption App-2 in Online Appendix A.2.
A defining feature of these CATE models is that the pre-
diction for a new individual can be represented as a
weighted average of residualized outcomes from the
training data, where the weights are determined by the
degree of similarity in covariates between individuals in
the training set and the new individual and estimated
using honest estimation (Athey et al. 2019b). Besides, the
residualization function is constructed using cross-fitting
(Newey and Robins 2018). Essentially, this class includes
popular models such as Causal Forest (Wager and Athey
2018), S-learners and T-learners with different outcome
models (Kiinzel et al. 2019), and R-learners with a variety
of second-stage estimators (Nie and Wager 2021, Ken-
nedy 2023). Online Appendix A.2 provides a formal
characterization of these models.

The following theorem formally establishes the rela-
tionship between the magnitude of unexplained varia-
tions and the variance of state-of-the-art CATE models.

Theorem 1 (Variance of CATE Prediction). Assume that
the CATE model (denoted as Ty, ) belongs to the general class
described previously. Then, the variance of the predicted
CATE for an individual with covariates Xnew scales with the
amount of unexplained variations in the outcome variable.
Mathematically, for given the same level of observed heteroge-
neity in the training set (ie., {X;, W,-}f.il), there exists two
constants Cy and C, such that

CiVarle; "] < Var[Zy, (xnew) |{Xi, Wikils] < CoVarle;"],
@
when Var[e] "] > o3 for some o?.

Theorem 1 shows that the upper and lower bounds
of the variance of the predicted CATE are proportional
to the variance of the unexplained variation in the out-
come variable when it is nontrivial, with both bounds
increasing monotonically in Var[e"]. Consequently,
the unexplained variation in the outcome variable,
irrespective of its impact on the consistency of CATE
estimators, leads to instability in CATE models. This
insight is especially crucial for practitioners focusing
on optimizing long-term outcomes, as accumulating
unexplained variations can significantly heighten the
variance of the CATE estimator.

Next, we assess how often targeting decisions in-
formed by the CATE model diverge from the optimal
targeting strategy, which involves targeting customers
with positive true CATEs. The result in Theorem 1
leads to the following.

Corollary 1 (Mistargeting Probability). Suppose the com-
pany has an unbiased CATE model Ty, and targets only
customers predicted to have a positive treatment effect.’

Then, the probability of the model deviating from the optimal
policy, P[Ty, (Xnew) * Ty, (Xnew) < 0], increases with the var-
iance of the predicted CATE, that is, Var([Ty, (Xnew)]-

Corollary 1 reveals a fundamental challenge in target-
ing for long-term outcomes: Instability in CATE predic-
tions caused by unexplained variations in the outcome
variable can result in erroneous targeting decisions.
Therefore, regardless of the application domain, com-
panies will invariably encounter challenges in accurate
targeting when faced with substantial unexplained var-
iations in the outcome variable.

A possible solution to the high variance problem in
optimizing long-term outcomes is the use of CATE esti-
mators specifically tailored to reduce prediction variance.
This can be achieved by constraining the complexity of
the CATE model, such as applying lasso regularization
during the estimation process of R-learners (Nie and
Wager 2021). Although these estimators are effective at
reducing variance, they often introduce substantial
underfitting bias. Our empirical analyses indicate that in
cases with limited sample sizes, this bias can significantly
impair targeting accuracy (refer to Table 1 for empirical
results). Therefore, the effective use of regularization
necessitates large sample sizes.

Finally, there are alternative approaches for develop-
ing targeting policies. These methods, known as policy
learning, directly leverage experimental data to learn the
optimal allocation of treatments. They typically derive a
proxy variable for the true CATE, such as the inverse
probability weighting (Kitagawa and Tetenov 2018) or
doubly robust scores (Athey and Wager 2021) and then
estimate a policy (often using machine learning models)
to determine which customers the firm should target.
Because these methods depend on a proxy variable
derived from experimental data, they are conceptually
similar to the targeting approach examined in this sec-
tion. Therefore, they encounter a similar challenge: sub-
stantial unexplained variations in the outcome variable
can increase the variance of the CATE proxy, resulting
in ineffective targeting policies. We provide additional
empirical evidence in Section 6.4.2.

3.3. Summary

Our theoretical analysis reveals that for outcomes
based on repeated customer behaviors, factors like
unobserved heterogeneity and customer churn are
key contributors to unexplained per-period variations.
Over time, these variations accumulate, resulting in
increased variance in outcomes as the observation
period lengthens. As a result, the accuracy of conven-
tional CATE models is compromised due to this noise
accumulation, leading to less effective targeting deci-
sions. These insights highlight a critical challenge in
estimating CATEs and developing effective targeting
strategies for long-term business outcomes.
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4. Solution: Surrogate Index with

Separate Imputation

Thus far, we identified that the primary issue with inef-
fective long-term targeting arises from the accumulation
of unexplained variations in the outcome of interest.
Therefore, a potential solution to improve targeting
effectiveness is to reduce the unexplained variations in
long-term outcomes that are not attributable to the inter-
vention. To achieve this, we suggest using a noise-reduced
proxy in place of the actual outcome variable when esti-
mating the CATE model. This proxy aims to capture the
long-term treatment effect heterogeneity while exclud-
ing the variations unrelated to the intervention.

4.1. Solution Overview

We use the surrogate index (Athey and Wager 2019,
Yang et al. 2023) to construct the noise-reduced proxy.
This index represents the expected long-term outcome,
derived from a set of observed short-term outcomes—such
as immediate postintervention purchases in our case—
and pretreatment covariates. To construct a surrogate
index, companies can use historical data to build a
model that identifies the relationship between short-
term behaviors (along with customer covariates) and
the actual long-term outcome. After establishing such a
model, companies can collect short-term data, use it to
predict long-term outcomes, and then assess the impact
of their intervention based on these predicted long-term
results. This approach offers three major advantages:

1. Noise Reduction: By design, the surrogate index
incorporates only unexplained variations from the short-
term outcomes in the surrogate model. Therefore, the
predicted long-term outcome (or proxy) excludes the
unexplained variations of behaviors occurring after these
short-term outcomes were collected. As a result, the sur-
rogate index includes fewer unexplained variations (ie.,
those unrelated to the intervention) compared with the
actual long-term outcome.

2. Long-Term Orientation: The surrogate index effec-
tively represents the long-term effect of the interven-
tion. Many marketing interventions result in long-term
shifts in consumer behaviors by initiating immediate
behavioral modifications. In such scenarios, short-term
outcomes frequently account for a significant portion,
if not all, of the long-term treatment effect. For exam-
ple, the coupon promotion in our empirical application
can reduce customer churn in the initial week follow-
ing the intervention, as illustrated in Figure 1, and this
enhanced retention eventually results in increased
aggregate long-term purchases due to the extended
lifetime of customers who received more promotions.
The short-term purchase data in this scenario reflects
the enhanced retention, enabling the surrogate index to
use this information to forecast the sustained, long-
term retention improvements.

3. Acceleration of Decision Time: For constructing a sur-
rogate index, companies require: (i) a model that links
short-term signals with long-term outcomes, which is
estimated using historical data; (ii) preintervention
covariates that are available before implementing the
intervention; and (iii) short-term outcomes that are
observed immediately following the intervention. As a
result, companies can develop targeting strategies for
optimizing long-term outcomes soon after the interven-
tion (i.e., as soon as the short-term signals are observed),
thus bypassing the delay associated with waiting for
observing the actual long-term outcomes.

The first benefit of the surrogate index method high-
lights its potential to improve long-term targeting effective-
ness. By reducing unexplained variations in the outcome
variable, it enhances CATE estimation precision (as per
Theorem 1), leading to more accurate targeting decisions
(Corollary 1). The second benefit confirms the validity of
using the surrogate index for estimating long-term treat-
ment effects: although such targeting policies mainly
depend on short-term behaviors, they can be effective if
these behaviors explain a significant proportion of the
long-term treatment effect. The third benefit, although not
essential in our case since the focal company can postpone
the implementation of new targeting rules, might be cru-
cial in situations where rapid decision-making can lead to
substantial savings in organizational costs.

We next provide the formal definition of a surrogate
index, specify the conditions required for it to capture
long-term treatment effects (benefit 2), and illustrate its
variance reduction property (benefit 1).

4.2. Identification and Variance Reduction Using
Surrogate Index

Assume that the company has access to two data sets:

the experimental data with the intervention (denoted as

£), and the historical data without the intervention

(denoted as ). The surrogate index is defined as follows.

Definition 1 (Surrogate Index). The surrogate index is
the expected long-term outcome (Y; 1) of customers
in 'H, conditioned on their short-term behaviors (S; 1,
={Si1,...,S;1,} for some Ty < T) and pretreatment
covariates (X;). Mathematically, it can be represented
as Y1(St,, Xi) = Ex[Y; |S1,, Xi].

To ensure identification of CATEs using the short-term
signals, the following assumptions are made (Athey et al.
2019a).

Assumption 1 (ldentification Assumptions for Long-Term
CATEs). For the identification of the long-term treat-
ment effect through a surrogate index, the following
assumptions are made:

1. (Surrogacy) The short-term outcomes can fully mediate
the treatment effect of W; on Y, r; that is, Wy ALY 7|S; 1,,
X;, Viet.
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2. (Comparability) The experimental and historical data
%re comparable in distribution; that is, Yir|Sit,, Xi, i€ &
~ Yi7|Si1, Xi, i€ H.

The surrogacy assumption states that the variations in
short-term behaviors induced by the intervention can
fully reflect its causal impact on the long-term outcome.
Therefore, if this assumption holds, and we can accu-
rately estimate the influence of S; 7, on Y; 1, then the
long-term treatment effect can be deduced simply by
observing the short-term outcomes of the experimental
units. The comparability assumption ensures that the
impact of S; 1, on Y; 7 is the same for both the experi-
mental data and the historical data, which implies that
one can use the historical data to infer the impact of S; 7,
on Y;r and then extrapolate this relationship to the
experimental data.

Altogether, when both of these assumptions hold
true, the surrogate index representation becomes a
reliable tool for estimating the CATE on the long-term
outcome. Furthermore, because the surrogate index is
based on short-term outcomes, it contains less unex-
plained variation compared with the actual long-term
outcome. Formally, we state the theorem as follows.

Theorem 2 (Identification and Variance Reduction Using
Surrogate Index). Suppose that Assumption 1 holds.

1. The CATE of the intervention on the long-term outcome
is equal to the CATE on the surrogate index, that is, Ty, (X;) =
Y1 (S;1,(1),X:) — Y1(S;,1,(0),X;), where S; 1,(W;) denotes
the potential outcome of the short-term outcomes.

2. The variance of the surrogate index is smaller than the
variance of the actual long-term outcome, that is, Var[Yr
(Si,1,(Wi), Xi)] < Var[Y; r(Wi)[X;].

Theorem 2(1) suggests that the surrogate index offers
an unbiased estimation of the CATE for the long-term
outcome, assuming we can correctly estimate Ey/[Y 7|
S1,,Xi]. Meanwhile, Theorem 2(2) demonstrates that
the surrogate index has lower variance compared with
the actual long-term outcome. Combining these insights
with those from Theorem 1 and Corollary 1, it becomes
evident that employing the surrogate index method
for CATE estimation can (i) reduce variance in CATE
predictions and (ii) decrease the likelihood of mistar-
geting when the objective is optimizing the long-term
outcome.

Importantly, the realization of these benefits depends
primarily on the validity of Assumption 1, as discussed
in Section 4.4. It also relies on the firm’s capability to
accurately estimate Ey[Y; r|Sr,, X;] using available his-
torical data, which we will discuss in the following
section.

4.3. Separate Imputation Approach
Conventionally, researchers have constructed the surro-
gate index by using a regression model that associates

long-term outcomes with short-term results and prein-
tervention covariates (Athey and Wager 2019, Yang
et al. 2023). However, in many marketing scenarios, this
method may encounter a challenge of high variance,
particularly in the presence of customer attrition, as unex-
plained customer churn hinders the model’s ability to
distinguish between variations that can and cannot be
explained by the short-term outcomes. In this section,
we delve into the reasons for this shortcoming and intro-
duce an novel solution that firms can seamlessly adopt
when constructing the surrogate index.

4.3.1. Challenge: Inseparable Unexplained Variations
Arising from Attrition. When customer attrition exists,
the total purchases of customer i over T periods (Y; )
are determined by two factors: the customer’s active
lifetime up to period T (denoted as 7), and their
expected purchase per period while active (denoted as
Al. We can further break down these factors into var-
iations that can be explained by S; 7, and X;, and unob-
served variations arising from individual preferences
toward the firm not captured in the data (e.g., unob-
served heterogeneity, random shocks, etc.). Hence,
the aggregate purchase counts for customer i can be
expressed as

Yi,T = TLT X AZT = {]E[T?|Si,T0/Xi] + EZT}
X {E[A]|S; 1., Xi] + ¢}
=E[7]|S; 1, X;|E[A]|S; 1,,Xi]

+E[AT[S; 1, Xile? +E[AT|S; 1, Xi]eM + el e,

=&i(S;, Tor X;), additional variations
3)

where ¢/ and ¢ denote the unexplained variations in
lifetime and purchase intensity, respectively.

The previous formulation reveals a key challenge in
estimating the relationship between short-term and long-
term outcomes: There is an additional term, &;(S; 1,, X:),
which connects explained variations in customer life-
time (attributable to short-term outcomes and observed
covariates) with unexplained variations in per-period
purchase intensity, and vice versa. This implies that
directly modeling Y;r using S;7, (and X;) becomes
problematic, as the model may not effectively differenti-
ate whether variations in Y; r are driven by S; 7, (and X;)
or by ¢7 and ¢. This inseparability results in high vari-
ance in the surrogate model, as it struggles to separate
the explainable and unexplainable variations present in
the historical data. (Further discussion and an empirical
example of this phenomenon are available in the Online
Appendix B.)

Previous research has addressed the inseparability
problem by introducing additional assumptions (Brown
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1983, Roehrig 1988, Chesher 2003, Hoderlein and Mam-
men 2007, Imbens and Newey 2009). For example,
a common method to tackle the multiplicative noise
structure is to assume that the unexplained part in the
outcome variable (e.g., &(S;1,,X;) and &7 ¢ in (3)) is
independent of the target variables (S; 1, in our case)
after controlling for observed covariates (Hoderlein and
Mammen 2007, 2009; Su et al. 2019). However, this
assumption does not hold in our scenario because
&i(Si,1,,Xi) is clearly associated with S; 7, even after con-
trolling for X;. Another solution proposed in the litera-
ture is to use instrumental variables that correlate with
S; 1, but remain unassociated with the unexplained var-
iations (Chernozhukov et al. 2007). Yet, this approach is
rarely feasible in practice since it necessitates historical
data that includes exogenous shocks capable of serving
as instrumental variables when modeling the relation-
ship between short-term and long-term outcomes.

Consequently, we propose a new imputation technique
for creating the surrogate index, specifically designed to
tackle the inseparability problem stemming from customer
attrition.

4.3.2. Solution: Separate Models for Customer Attri-
tion and Purchase Intensity. Upon examining (3), it
becomes clear that the issue of inseparable unexplained
variations can be addressed by separately estimating
two relationships: first, between customer lifetime and
short-term outcomes (i.e., IE[TiTISi,TO,Xi]), and another
between purchase intensity and short-term outcomes
(i.e., E[A,.T |Si 1,,Xi]), and combine the predictions of
these two models afterward. We refer to this as the sepa-
rate imputation approach as we determine the long-term
outcome by combining predictions from two distinct
surrogate models rather than making a direct prediction.

To be more specific, the separate imputation capita-
lizes on the measurable nature of both customer lifetime
an purchase intensity. The first model predicts customer
lifetime using S; 1, and X; (denoted by 7 r(X;|S; 1)),
whereas the second one estimates the purchase inten-
sity using S; 1, and X; (denoted by Ar(X|S; 1,)). After
constructing the two surrogate models using the histori-
cal data, we predict the lifetime and purchase intensity
for customers in the experimental data using their
observed short-term outcomes (S; r,(W;)) and pretreat-
ment characteristics (X;). We then combine these pre-
dicted values by multiplication to create the surrogate
index that will be used for CATE estimation and policy
learning, that is,

YoP (X185 1, (Wh) = T1(X:|S, 7, (W)

X AT(Xilsi,To(Wi))/ i€l

By design, the estimation of l??ep (Xi|S;,1,(W;)) is unaf-
fected by &;(S; 1,,X;), circumventing the high-variance

issue stemming from the multiplicative noise pattern
seen in (3).

4.3.3. Implementing Separate Imputation in Prac-
tice. Our approach can be applied to various business
contexts as long as the firm has access to historical data
‘H that can be used to calibrate the two surrogate mod-
els. In contractual settings, where customer churn is
observable, creating two separate models is straightfor-
ward, as both customer lifetime and average purchases
per alive period can be directly calculated from the
available data. In noncontractual settings, such as the
one in our empirical application, customer churn is not
immediately apparent, which means that the actual
customer lifetime cannot be directly obtained from the
data. In such contexts, we utilize established metrics
like recency and frequency (derived from observed cus-
tomer behaviors) to approximate customer lifetime and
purchase intensity. In our application, we employ the
last observed purchase time up to T as a proxy for 7|, and
the average number of purchases per period up to T; 1 as a
surrogate for the average purchase intensity A!.

While 7] and A] may not flawlessly represent the
true customer lifetime or purchase intensity (as custo-
mers might churn after the last period of purchase),
these metrics are useful proxies because (i) together,
they provide sufficient information to infer customer
lifetime and purchase intensity (Fader et al. 2005, 2010),
and (i) 7 is largely reflective of customer lifetime (for
example, customers who churn early typically show
low recency), whereas A! correlates strongly with pur-
chase intensity (such as high average purchases per
period indicating consistent frequent buyers). There-
fore, using these proxies for estimating surrogate index
is a justified and practical approach to address the chal-
lenge of inseparability iAnSenoncontractual settings.

To conclude, using )?Tp(Xilsi,To(Wi)) as a substitute
for the actual outcome in CATE estimation presents sig-
nificant benefits for addressing the challenges of long-
term targeting. First, this approach results in less noise
compared with using the actual long-term outcome, as
it omits unpredictable variations that occur between
To + 1 and T. Second, it enables valid inferences about the
long-term treatment effect under Assumption 1. Last,
using separate models for churn and purchase helps
to more accurately assess the influence of short-term
behavioral changes on long-term purchasing patterns. As
illustrated in Sections 5 and 6, this separate imputation
method outperforms other strategies commonly used by
firms, including existing imputation techniques.

4.4. Potential Limitations and Implementation
Considerations

Although the surrogate index method presents signi-

ficant advantages, it is important to acknowledge its
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limitations and the potential challenges encountered
during implementation. Understanding these factors
is essential for assessing the generalizability of the
proposed approach and its applicability in different
situations.

4.4.1. Existence of Less Noisy Surrogate Variables. Similar
to Athey et al. (2019a), we use immediate outcomes
per period as the surrogate variables in our empirical
study. These variables can reflect potential long-term
impact in two ways. First, being integral parts of Y; r,
they inherently capture parts of the long-term treat-
ment effect. Second, changes in short-term behaviors
can be indicative of shifts in long-term purchasing
trends. For example, an intervention that enhances
customer retention, thereby increasing long-term pur-
chases, would likely result in a greater proportion of
customers in the treatment group making nonzero
short-term purchases due to reduced churn. Similarly,
if the intervention encourages sustainable purchasing
habits, an increase in short-term purchase frequency
among treated customers would be observed, signal-
ing the habit formation influenced by the intervention.

Surrogate variables of this kind are particularly bene-
ficial in contexts where the outcome involves recurring
activities such as repeat purchases or engagement,
commonly seen in industries like retail, subscription
media, food service, and transportation. However, for
sectors characterized by long purchase cycles, like the
automotive industry, finding valid surrogate variables
can be challenging. In these cases, our method may be
less applicable, as it can be difficult to detect short-term
indicators. Furthermore, when short-term outcomes
are also noisy (e.g., when the data are obscured for pri-
vacy protection), the benefits of a surrogate index may
not be significant. In such situations, the surrogate
index method is not applicable given the lack of effec-
tive surrogate variables.

4.4.2. Choice of Surrogates. The surrogacy assump-
tion requires that short-term outcomes fully mediate the
long-term treatment effect. When this condition is not
met, the CATEs identified using the surrogate index
may diverge from the actual CATEs, leading to poten-
tial mistargeting errors (Yang et al. 2023). One way to
mitigate the risk of surrogacy violation is to include a
large number of surrogates (Athey et al. 2019a). For
example, when addressing long-term outcomes such as
repeated transactions, incorporating more periods into
the surrogate index reduces the chances of violating
this assumption. However, adding more periods also
increases unexplained variations, which may decrease
the effectiveness of targeting policies. This issue is for-
mally characterized in the following.

Corollary 2 (Noise Accumulation of Surrogate Indices).
Suppose that Assumption 1 holds. When we build two sur-
rogate indices based on different periods of short-term out-
comes, where Ty > T}, it follows that

Var[?T(Si,To(Wi)/ Xi)] > Var[?T(Si,T()(Wi)/ Xi)].

Corollary 2 and the surrogacy assumption highlight
the tradeoff between information gain and noise accu-
mulation for optimal targeting performance. Specifi-
cally, including more periods of short-term outcomes
improves the validity of the surrogacy assumption.
However, it also introduces unexplained variations
which in turn increase the mistargeting probability.
Determining the optimal number of periods for esti-
mating surrogate models requires empirical investi-
gation, which is challenging due to the difficulty of
directly testing the surrogacy assumption. In this paper,
we address this question by comparing holdout target-
ing performance across surrogate indices constructed
using varying numbers of periods. Our simulations and
real-world data analysis indicate that surrogate models
with fewer periods may significantly improve targeting
effectiveness, even though they might risk violating the
surrogacy assumption.

4.4.3. Violation of Comparability Assumption. In this
work, we construct surrogate indices using historical
data. This method is based on the assumption that the
relationships between short-term and long-term out-
comes remain consistent across both historical and
experimental data sets. This assumption is expected to
be valid in our empirical analysis, as our experiment
includes all newly acquired customers, who share char-
acteristics with those in the historical data set, and the
company’s product offerings and acquisition strategies
remained unchanged. However, if the experiment tar-
gets a specific subset of customers (like those acquired
through a particular channel), additional adjustments
may be necessary to ensure the surrogate models,
developed from historical data, remain generalizable
(Miratrix et al. 2018, Sahoo et al. 2022).

5. Empirical Performance:
Simulation Evidence

5.1. Simulation Setting

We first validate our solution using synthetic data. Our
simulations consider a company implementing a mar-
keting intervention with the aim to maximize total pur-
chases (Y; 1) over a 10-week period (T=10) after the
intervention. We generate experimental data (£) with
accumulated unexplained variations over time. Specifi-
cally, we assume that the intervention has a direct and
heterogeneous impact on churn probability and pur-
chase intensity during the first three weeks, and no fur-
ther impact after the fourth week. For simplicity, we
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assume that the unexplained variations in purchase
intensity (while alive) are independent across time.
Therefore, the noise accumulation is mainly driven by
unexplained customer attrition. More details regarding
the simulation setting and the noise accumulation beha-
viors can be found in Online Appendices C.1 and C.2.

We also generate historical data () for 5,000 custo-
mers using the data generating process for the control
group, which reflects the company not implementing
the intervention in the past. These data will be used
to construct the surrogate models. For the main analy-
sis, we select T = 3 periods for constructing the surro-
gate index, ensuring compliance with the surrogacy
assumption (Assumption 1). Additionally, we vary the
number of periods in constructing the surrogacy index
to explore the balance between gaining information
and accumulating noise. The model specifications for
creating surrogate indices are detailed in the Online
Appendix C.5.

5.2. Comparison Methods

5.2.1. Alternative Imputation Methods. We compare
our separate imputation approach to various imputa-
tion methods for surrogate index construction. The
first technique we examine is the single imputation
approach proposed by Athey et al. (2019a) and Yang
et al. (2023). In this method, the outcome variable
(Y; ) is regressed directly onto the short-term signals
(Si1,.-.,Si1,) and the preintervention covariates (X;).
However, this imputation approach does not account
for the inseparable nature of unexplained variations
stemming from customer attrition. As a result, this
model offers a less accurate estimation for the impact
of short-term outcomes on Y;r compared with the
separate imputation technique.

We also examine the beta-geometric (BG)/NBD
model with covariates (Fader and Hardie 2007) as an
alternative imputation approach. This model has not
been traditionally suggested as an imputation tech-
nique in the surrogate index literature, but it could be a
reasonable candidate in our context because it has been
shown to be effective in capturing unobserved hetero-
geneity in customer attrition and purchase intensity.
The accuracy of the BG/NBD model, along with similar
variants like the Pareto/NBD model, heavily depends
on the distributional assumptions and the assumed
functional forms of the relationship between customer
covariates. Consequently, in situations where the rela-
tionship between observed covariates and the hetero-
geneity of treatment effects is intricate, we expect the
BG/NBD model to underperform when contrasted
with more flexible frameworks, such as nonlinear
regressions or machine learning models.

5.2.2. Alternative Variance Reduction Methods. In
addition to using alternative imputation methods to

obtain the surrogate index, we investigate other tech-
niques to reduce the variance in CATE estimation. One
such technique is to explicitly regularize the CATE
function during the estimation process. Here, we use
R-learner with lasso regularization when estimating
CATE function (Nie and Wager 2021) to study the
effectiveness of regularization as a potential solution.
Although regularization can reduce the variance of
CATE models, it can also introduce significant under-
fitting bias (Hastie et al. 2009)—The penalty term from
regularization may cause the model to overlook crucial
data patterns, which can be particularly problematic
when dealing with a small training sample with large
unexplained variations.

Another obvious alternative to reduce variance is
to increase the sample size of the experiment data.
Although this is straightforward to evaluate when
using synthetic data, this is not a feasible or optimal
solution for enhancing targeting policies in practice.
First, the number of customers who qualify for the
intervention is often limited, which limits the sample
size available to most firms.* Second, even when com-
panies can increase the experimental sample size, the
rate at which the variance of CATE decreases with
respect to sample size can be considerably slow when
the noise level is high. Nonetheless, we incorporate
this alternative approach in our simulation analysis to
evaluate the potential advantages of scaling the experi-
ment, as opposed to employing different dependent
variables for CATE estimation.

5.2.3. Baseline Approaches. Finally, we examine two
baseline methods commonly used in practice: the
default approach and the myopic approach. The default
approach targets customers based on their actual long-
term outcome, Y; 7. This approach is the simplest and
most common, but it is expected to be ineffective due
to the substantial unexplained variations in Y; 7. The
myopic approach targets customers based on their
short-term performance, Y; 1, = ZtT:‘)l Sit (i.e., based on
their behavior only a few periods right after the inter-
vention). This approach can avoid noise accumulation
(as there is less unexplained variations in behavior up
to Tp), but it may not yield optimal performance
because it disregards the disparities between short-
term and long-term treatment effects.

5.3. Evaluation Procedure

We assess targeting performance through 200 boot-
strap replications and report the mean and standard
deviation of key metrics. In each replication, we first
create a training and a validation set. For each of the
approaches considered, we use the training set to
construct a CATE model 7y(X;) using Y as the depen-
dent variable (e.g., Y = Yy for the default approach,
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Y= ??e}) for the proposed approach, etc.). We then cal-
culate the area under the targeting operating charac-
teristic curve (AUTOC) (Yadlowsky et al. 2021) using
the actual long-term outcome (Y; 1) on the validation
set.

Specifically, AUTOC is constructed as follows. Given
the predicted CATEs Ty (X;), the targeting operator char-
acteristic (TOC) for Y; r is defined as

TOC(¢;7y) = E[Y;,r(1) — Y; 7(0) |F;y (Ty(X1) 21— 9]
—E[Y;,r(1) - Y;,r(0)],

where F-~ is the cumulative distribution function of the
predicted CATEs. The TOC measures the incremental
gains from targeting the top ¢ X 100% customers, as the
difference in ATE between customers in the top ¢ X
100% CATE group and all customers. Then, the AUTOC
is defined as

AUTOC(7) = / 1TOC(¢;?)¢7Z¢.
0

A model 7y is better than another model 7 in identi-
fying customers in the top ¢ x 100% CATE group if
TOC(¢;7y) > TOC(¢; Ty). The AUTOC is a useful met-
ric for evaluating the effectiveness of a CATE model
because it quantifies how well the model ranks units
based on their treatment effect, with a higher AUTOC
indicating a more effective targeting (or treatment pri-
oritization) rule.

5.4. Results
Table 1 shows the AUTOC values of different ap-
proaches. Each row corresponds to CATE models for a
specific outcome variable, and the columns indicate
the two methods used for CATE estimation and the
two training sample sizes (1 =1,000 and »n =50,000). In
Online Appendix C.6, we also provide the results from
other CATE models (including S-learner and T-learner)
to corroborate that our findings are not driven by a par-
ticular CATE model.

In the scenario of a small sample size (n =1,000), there
are several important findings. First, all the methods

that use short-term proxies as the dependent variable for
CATE estimation have superior AUTOC performance
(both higher mean values and smaller standard devia-
tions) than the default approach. This implies that rely-
ing on short-term signals rather than the actual long-
term outcome can significantly improve the effective-
ness of targeting. Second, the separate imputation
method consistently achieves the highest performance
(highest AUTOC means with smallest standard devia-
tions), regardless of models being used to estimate
CATEs. In contrast, the single imputation performs
worse than other short-term approaches. This finding
highlights the importance of separating churn an pur-
chase when creating a surrogate index. Third, although
the BG/NBD technique fares better than using the
actual outcome, it falls short of the performance
achieved by the separate imputation method. This can
be attributed to the BG/NBD approach being less effi-
cient when the relationship between observed charac-
teristics and key parameters of interest is complex, as it
is the case in our simulation.

Next, we highlight the efficiency of the proposed solu-
tion with respect to sample size. In situations where
separate imputation is applied to small experimental
data (n=1,000), its performance (AUTOC = 0.88 for both
methods) nearly matches the performance observed with
50 times larger data sets (AUTOC = 0.92 without regular-
ization and AUTOC = 0.93 with regularization). Notably,
the difference in AUTOCs between the small and large
data sets is lower for the separate imputation method
compared with other strategies, which highlights the
sample size efficiency of our proposed solution. Further-
more, when using a nonregularized CATE model, using
short-term proxies for targeting within a small experi-
mental data set yields better performance with AUTOC
scores between 0.83 and 0.88, compared with the stan-
dard approach trained on a significantly larger data set,
which achieves an AUTOC of 0.73. Taken together, these
results make a strong case for the separate imputation
technique, highlighting its ability to achieve near-optimal
performance even with significantly fewer data points
compared with larger datasets.

Table 1. Comparison of AUTOC Values for Different Outcomes and CATE Models

N = 1,000 N = 50,000

Outcome ¥ Without regularization With regularization Without regularization With regularization
Separate imputation 0.88 (0.04) 0.88 (0.13) 0.92 (0.02) 0.93 (0.02)
Single imputation 0.83 (0.09) 0.63 (0.40) 0.91 (0.02) 0.91 (0.02)
BG/NBD imputation 0.84 (0.07) 0.78 (0.30) 0.91 (0.02) 0.93 (0.02)
Myopic (Y;3) 0.85 (0.06) 0.81 (0.28) 0.91 (0.02) 0.93 (0.02)
Default (Y 10) 0.55 (0.30) 0.31 (0.45) 0.73 (0.04) 0.92 (0.02)

Notes. Higher AUTOC reflects better prioritization rule. We average the results over 200 replications and show in parentheses the standard
deviation. We use Causal Forest as the CATE model without regularization and R-learner with lasso regularization as the model with
regularization. The performance of different CATE models is provided in Online Appendix C.6.
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Finally, it is noteworthy that the performance of the
R-lasso remains consistent across all methods when
working with a large experimental data set (1 =50,000).
This result suggests that when there is an abundance of
samples, regularization can effectively address the noise
accumulation challenge. However, in smaller sample set-
tings, applying regularization to CATE models for the
default approach can lead to a significant drop in target-
ing performance, with the AUTOC value plummeting to
0.31. Such an outcome is driven by R-lasso’s inclination
to underestimate treatment effect heterogeneity, particu-
larly in contexts with limited data.” Hence, firms should
not depend exclusively on regularization for mitigating
noise accumulation—Its effectiveness may realize only
when dealing with large-scale experiments.

5.5. Tradeoff Between Information Gain and
Noise Accumulation
In the previous section, we emphasize cases where
we incorporate only the minimal set of short-term out-
comes (Tp=23) to meet the surrogacy assumption
(Assumption 1(1)). However, verifying the surrogacy
assumption in real-world applications is challenging,
and companies must balance between information
capture and noise accumulation when determining the
number of periods to include in the surrogate index.
Although incorporating more periods into the surro-
gate model could help fulfill the surrogacy assump-
tion, it might also increase unexplained variations,
potentially diminishing the targeting effectiveness (as
discussed in Section 4.4.2).

We explore this tradeoff with our simulated data,
simulating a real-world situation where firms deter-
mine the number of surrogates to include in their surro-
gate model. Specifically, we construct eight distinct
surrogate models, each using a different number of
short-term outcomes (ranging from Tp=1 to Ty =38)
using the separate imputation approach. Following
this, we generated 200 bootstrap replications and report
the average and standard deviations of the AUTOC for
each model. Figure 4 presents the results corresponding
to the number of periods ranging from Tp = 1to T = 8.

The inverted U-shaped relationship in Figure 4
reflects the tradeoff between information gain and
noise accumulation. As we increase T, from one to
three periods, the AUTOC improves because the inter-
vention has a direct impact until the third week. How-
ever, the AUTOC starts to decline once we include
behaviors beyond the third period (after satisfying sur-
rogacy). This pattern is consistent with the guidance
provided by Athey et al. (2019a) and Yang et al. (2023),
recommending that companies should use the smallest
set of short-term outcomes to create surrogate models,
provided that the surrogacy assumption holds.

Interestingly, models using only one or two periods
of information (where the surrogacy assumption is

Figure 4. (Color online) Tradeoff Between Information Gain
and Noise Accumulation: An Analysis of Causal Forest
AUTOCs with Surrogate Index Constructed Using Different
Periods

0.6

0.5
1 2 3 4 5 6 7 8

Number of Periods Used in Surrogate Index Construction

Notes. Each point reports the average over 200 simulation replica-
tions together with the one standard deviation interval. The dashed
line represents the mean AUTOC of the default approach. We used
1,000 customers in the training set. We present here the results of
using Causal Forest, but our findings are robust across different
CATE models. See Online Appendix C.8 for the results of different
CATE models.

violated) outperform the default approach. This sug-
gests that the benefits of noise reduction can outweigh
the drawbacks of information loss. In other words, if the
outcome of managerial interest (in our case, long-term
cumulative purchases) has significant unexplained var-
iations, violating the surrogacy assumption might not
be the major concern. In turn, firms can improve target-
ing performance by using short-term outcomes in the
surrogate models, even if these short-term behaviors do
not capture the full impact of the intervention.

6. Empirical Performance: Real-World
Application

This section evaluates the effectiveness of our pro-
posed method using data from a retail technology
company in Taiwan, as detailed in Section 2. We begin
by offering additional information about the customer
covariates, followed by an empirical demonstration of
the noise accumulation issue. Last, we showcase how
our proposed solution effectively identifies the most
responsive customers, thereby enhancing profitability.

6.1. Observed Customer Covariates

The company gathered a collection of customer co-
variates at the time of their initial purchase. This set
included information about their first transaction, such
as total sales, item count, and product categories, as well
as the location of the purchase (for example, a public-
access vending machine) and whether the customer was
referred by a friend. Given that these data are accessible
to the company prior to the execution of the interven-
tion, it can be used to estimate CATEs and determine
whom to target. Table 2 presents the summary statistics
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Table 2. Pretreatment Covariates and Comparison Across Two Experimental Conditions

Variable

Treatment (N = 889)

Control (N = 964) Difference p value

log(Sales) in the first transaction

log(Quantity) in the first transaction

Was the first-visit fridge open to public?

Did the first purchase include any side dish item?

Did the first purchase include any dessert item?

Did the first purchase include any beverage item?

Did the first purchase include any lunch box item?

Did the first purchase include any item from other categories?
Was the customer referred by another customer?

—0.0205 0.0182 0.601
0.0034 —0.0031 0.930
0.0035 —0.0031 0.859
0.0023 —0.0020 0.865
0.0002 —0.0002 0.990
0.0191 —0.0169 0.332
0.0128 —0.0114 0.461
0.0036 —0.0032 0.697

—0.0016 0.0015 0.916

Notes. All continuous variables were first standardized with mean zero and variance one. All binary variables were first subtracted by the mean
of all customers. We use the log scale for sales and quantity to create CATE models, as outliers in these variables may impact the performance of
CATE models. However, there is no significant difference for the two variables in the original scale.

of these variables for both the treatment and control
groups. To maintain the company’s privacy, all data
points have been standardized. The results confirm suc-
cessful randomization, as no significant differences exist
between the groups in any of the provided variables.

6.2. Evidence of Noise Accumulation

As discussed in Section 3.1, long-term outcomes often
accumulate unexplained variations that deteriorate the
accuracy of CATE models, leading to suboptimal tar-
geting. In this section, we provide empirical evidence
of the noise accumulation behavior in our specific
context.

First, to determine the portion of the variability in
Y; r that can be explained by X; and W;, we construct
a regression forest model that correlates Y; r with X;
and W;. We then estimate the unexplained variations
by calculating the absolute differences between the
actual purchases and their predictions from the model.
Figure 5 shows the unexplained variations in total pur-
chases over T periods, ranging from T=1 through
T=10. In the figure, the dot indicates the median, and

Figure 5. (Color online) Unexplained Variations in Y; 7 for
T=1,...,10
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Notes. Each dot illustrates the median of unexplained variations for
all customers in the experimental data. The gray shaded area presents
the range between the highest 10% and the lowest 10% of these
variations.

the gray shaded region covers the top and bottom 10%
of values of the distribution of unexplained variations.
Notably, the unexplained variations increase as the
duration of the observation period extends.

Next, we demonstrate the positive serial correla-
tions of unexplained variations across different peri-
ods. Using a similar approach, we create a regression
forest model, ]E[ i t1Xi, Wi], to predict the number of
purchases for each period. The residuals, €7,=5;;—
E[S;|Xi, W;], indicate the unexplained variations in
Sit. We then examine the cross-correlation of these
re51duals, COI‘(&I nr€i ,2) Figure 6 presents a consistent
positive correlation between the residuals for each 1 <
t; <t < 10 highlighting a significant noise accumula-
tion issue in our empirical context. As highlighted in
Section 3.1, the observed positive correlation is typi-
cally attributed to unobserved heterogeneity and attri-
tion, both of which are highly likely to occur in this
empirical context.

6.3. Empirical Analysis

Similar to our analysis in Section 5, we assess the effec-
tiveness of our targeting approach against various alter-
natives. Specifically, we compare it to the default and

Figure 6. (Color online) Cross-Correlation Matrix of Unex-
plained Variations in Each Period
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Note. All correlation coefficients reported are significantly nonzero
with p < 0.01.
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myopic approaches, as well as two other imputation
methods: single imputation and the BG/NBD model.®

We created surrogate indices using historical data
from customers who were acquired at least 10 weeks
before the experiment began (1=4,031 customers),
ensuring that sufficient historical data are available to
model the relationship between short- and long-term
outcomes.” In all approaches, we use the first-week
short-term outcome (i.e., S; 1) to estimate the surrogate
indices. We determine the number of short-term peri-
ods empirically. (See Online Appendix D.7 for details
and complete set of results.)

6.3.1. Validation Approach and Key Metrics. To assess
the targeting performance of each approach, we use a
bootstrap validation scheme similar to that of Ascarza
(2018). Specifically, we generate B =500 data splits con-
sisting of training (70%) and validation (30%) sets. In
each split, we estimate CATE models using the training
set, with distinct outcome variables (Y) serving as the
dependent variable. Then, we predict the correspond-
ing CATEs (7y) for customers in the validation set.

Using the predictions for validation customers, we
evaluate the effectiveness of each targeting approach
based on two widely used metrics: the GATEs across
predicted CATE quintile groups and the expected profit
gained by targeting customers with positive predicted
CATEs.

6.3.1.1. GATEs by Predicted CATE Levels. Similar
to the analyses presented in Section 2, we start by divid-
ing validation customers into quintile groups based on
their predicted CATEs (Ty), with Q,y having the highest
predicted CATEs and Qg5 having the lowest predicted
CATEs. Next, we calculate the GATE for each quintile
group using the actual long-term outcome (Y 10):

GﬁE Y10 ( Qlf )

Zi:ierylel Yi0 B
[{i:ieQf, Wi=1}| Wit 1€ Q, weo-

Zi: iEQkY,W,-:O Yi, 10

6.3.1.2. Expected Profitability of Targeting Poli-
cies. To compute expected profitability, we consider a
policy that targets customers with positive predicted
CATEs (e, ©¥(X;) = 1{T(X;) > 0}) and calculate the
expected purchase counts in the next 10 weeks using the
inverse-probability-weighted (IPW) estimator (Horvitz
and Thompson 1952). Specifically,

V(r)
1 5 (ﬂ[wi = nY(xi)]> Yoo,

- m . ieValidation Set @[HY(XZ) = Wl]
4)

where P[rY (X;) = W] is the (estimated) propensity score
for customers who are assigned the same treatment by
n¥ as in the actual data.® Although the treatment assign-
ment in the data are random and independent of the
derived targeting policy, we use IPW adjustment to
account for any possible imbalances between treated
and nontreated customers because the sample used
for profit evaluation (i.e., validation customers who
were assigned the same treatment in the actual data as
n¥ assigns for policy evaluation) is relatively small.
The IPW adjustment is also frequently used in other
marketing literature that uses randomized controlled
experiments for policy evaluation (Hitsch et al. 2023,
Yoganarasimhan et al. 2023).

‘We then calculate the expected profit under policy

7" using the following formula:

Profit(n’) = AOV - |p- V(1) —d- (M)

N

. uWZl —d- (1 o Zf\il nY(XJ) . uW=0
N

7

where AQV is the average order value,” p is the average
profit margin, d = 15% is the discount the coupon pro-
vided, U" is the average number of coupons being used

. S A (x)
under the treatment condition W, and ~=5—— calcu-
lates the proportion of customers being treated under
policy 7.

When assessing the profitability of different ap-
proaches, we also investigate the policy learning
approach for determining targeting policies. As dis-
cussed in Section 3.2, using the actual long-term out-
come for policy construction could lead to issues with
noise accumulation. To address this, one could incor-
porate our proposed method into policy learning. This
involves replacing the actual long-term outcome with
a proxy that has reduced variance and subsequently
applying policy learning using this proxy as the out-
come variable.

Specifically, we use the doubly robust policy learn-
ing technique introduced by Athey and Wager
(2021). Our method involves several steps: First, we
estimate the doubly robust (DR) scores using various
outcome variables (Y) as the proxy for CATE. We
then develop targeting policies (1y) by creating cost-
sensitive classifiers that predict which customers
would have positive DR scores, using the DR score
itself as the misclassification cost. Finally, we com-
pute the expected profit improvement for each pol-
icy. Detailed information on the implementation is
available in Online Appendix D.3.
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Figure 7. (Color online) Actual GATEs by Predicted CATE Levels for Different Outcome Variables
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Notes. Each point represents the mean of bootstrap results on the validation customers together with the one standard deviation interval. Groups
Q7,..., QY are categorized based on the decreasing order of treatment effects predicted by CATE models for various outcome variables. GATEs
are computed on the actual long-term outcome (Y; 19). We present the results from T-learner as it gives the best targeting profitability. Our find-
ings are robust across different CATE models. See Online Appendix D.5 for the results from other CATE models.

6.4. Empirical Results

6.4.1. GATEs by Predicted CATE Levels. Figure 7
shows the GATEs by predicted CATE groups. As dis-
cussed in Section 2, the U-shaped curve generated by
the default approach indicates that the CATE model for
Y 10 is unable to identify customers with the highest or
lowest incremental effects. In contrast, all models that
use short-term signals to estimate CATEs are more
effective at ranking customers’ long-term treatment
effect than the default method.

Among all these models, the separate imputation
method produces the best targeting performance as it
generates the steepest curve. Specifically, the GATE for
Q,y (representing the most sensitive customers identi-
fied by the method) is much larger than that of Q,y,
larger than that of Q,5, and so on. Conversely, the
BG/NBD model yields the least favorable result among
all the proxies. This finding aligns with our intuition
that the BG/NBD approach is likely to be ineffective
when the parametric specifications of key parameters
are different from the actual relationships, which is
likely to be the case in this empirical application.

6.4.2. Profitability of Targeting Policies. We compare
the expected profit of each targeting policy, denoted by

7Y (as described in Section 6.3.1), with the profit the
company would obtain if it ran a uniform policy, 7,
which applies the best intervention uniformly to all
customers. In our scenario, given that the average treat-
ment effect is positive, 7y involves sending three cou-
pons to every customer. Specifically, we define the
profit improvement (PI) for each targeting approach as:
PI(rY) = Il)frgfflltt((’;:; —1, where Profit(rg) is calculated in
the same way as Profit(r¥).

Table 3 presents the results of different approaches.
The first column, labeled “Predicted CATEs,” illustrates
the profit improvement achieved when targeting rules
are based on predicted CATEs.'” The second column,
labeled “Policy Learning,” details the profit improve-
ment attained by using the doubly robust policy learn-
ing approach with various outcome variables.

Several key results are worth highlighting. First, con-
sistent with our simulation results, the separate impu-
tation approach (shown in the first row) consistently
delivers the highest expected profits, whether we use
predicted CATEs or policy learning for targeting. In
contrast, the default method (last row) consistently
leads to a loss in profit. This suggests that basing target-
ing decisions on predicted CATEs derived from actual
long-term outcomes can detrimentally affect the long-

Table 3. Expected Profit Improvement: Targeting Based on Predicted CATEs or
Targeting Using Policy Learning Based on Different Outcome Variables

Outcome variable Y

Predicted CATEs

Policy learning

Separate Imputation
Single Imputation
BG/NBD Imputation

5.81% (4.19%)
4.06% (4.51%)
0.95% (2.77%)
Myopic 3.34% (3.60%)
Default —3.52% (3.17%)

4.57% (3.90%)
3.66% (4.75%)
—0.26% (4.36%)
3.51% (4.58%)
—3.44% (3.37%)

Notes. We average the profit improvement over 200 replications and show in parentheses the
standard deviations. For the “Predicted CATEs” approaches, we present the results from T-learner as
it gives the best targeting profitability. Our findings are robust to using different CATE models.
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term profitability, highlighting the substantial impact
of noise accumulation. Interestingly, the myopic ap-
proach (fourth row) also mitigates much of the profit
loss caused by high noise levels. This suggests that in
certain scenarios, using less information—such as fewer
observed periods—can, paradoxically, lead to better out-
comes for long-term profitability.

Second, the separate and single imputation methods
(first and second rows, respectively) outperform the
myopic strategy in terms of profit. This highlights the
importance of connecting short-term and long-term
outcomes. However, the BG/NBD model (third row)
falls short in performance compared with other short-
term proxies, suggesting that flexible machine learning
methods may be more advantageous in our empirical
context. Last, the results obtained from policy learning
are marginally less effective than those based on pre-
dicted CATEs, potentially due to the lower accuracy of
the doubly robust scores compared with the predicted
CATESs from the CATE model.

7. Conclusion and Future Directions

Firms often leverage targeted interventions to improve
their business outcomes. An increasingly popular ap-
proach is to combine experimentation (or A /B testing)
and customer data to predict each customer’s sensitiv-
ity to an intervention. However, our research—both
from theoretical and empirical perspectives—shows that
this method can be ineffective in situations where out-
comes are the result of recurrent behaviors that accumu-
late unexplained variations over time. To address this
challenge, we propose a new targeting strategy that
emphasizes reducing the noise in outcome variables prior to
estimating CATE models. This method enhances the
precision in estimating customers’ long-term sensitivity
to interventions, thereby significantly improving target-
ing efficacy.

Specifically, our proposed solution involves develop-
ing a surrogate index using separate imputation to effec-
tively address the challenge of estimating long-term
CATE. This method uses short-term behavioral changes
to infer long-term treatment effects while distinctively
accounting for the dynamics of customer attrition and
purchase intensity. As a result, it effectively reduces
the impact of unexplained variations when estimating
CATE for long-term outcomes, offering significant per-
formance improvements over current methodologies.
Our solution is readily applicable using commonly acces-
sible machine learning algorithms, rendering it practical
for a broad range of businesses, spanning industries with
both contractual and noncontractual customer relation-
ships. By capitalizing on their existing historical purchase
data, companies can improve their targeting strategies
without the need for expanding the size of their experi-
ments, thus avoiding extra costs.

We evaluate our proposed solution using both simu-
lation analyses and a real-world marketing campaign,
demonstrating superior targeting performance com-
pared with existing practices. Our results also highlight
the tradeoff between information gain and noise accu-
mulation, emphasizing the importance of balancing
these factors when determining the optimal number of
short-term outcomes to include in a surrogate index
model. Our findings indicate that when the long-term
outcome is notably noisy, using a smaller set of short-
term outcomes can outperform targeting strategies
based on predicted CATEs of the actual long-term out-
come, even in scenarios where the short-term outcomes
do not entirely explain the long-term treatment effect.
In practice, companies can conduct empirical testing to
determine the most effective number of short-term out-
come periods for inclusion in their surrogate models,
thus maximizing their targeting performance.

Although our research provides valuable insights and
solutions, there are limitations that suggest directions
for future research. First, our proposed solution directly
addresses the issue of unobserved heterogeneity in cus-
tomer attrition and purchase intensity, which is preva-
lent in various marketing contexts (Fader and Hardie
2010, Ascarza et al. 2018a). However, other dynamics
can cause more unexplained variations in the outcome
variable, such as customer inertia and variety-seeking
(Bawa 1990), state dependence (Roy et al. 1996, Dubé
et al. 2010), or consumer learning (Erdem and Keane
1996). Incorporating these behaviors explicitly into sur-
rogate models may further mitigate unexplained varia-
tions and enhance targeting performance. Furthermore,
there are different modeling approaches available to con-
nect the relationship between short-term and long-term
outcomes, especially when we have multiple points in
time for interventions. For example, Mazoure et al. (2021)
proposes an innovative reinforcement learning frame-
work that optimizes long-term customer engagement by
combining immediate rewards with an estimate of resid-
ual value derived from future product usage. Thus, future
research could explore the integration of these dynamics
and develop new modeling approaches for surrogate
index construction to enhance targeting performance.

Second, when the long-term outcome is a repeated pur-
chase measure, it is natural to use short-term purchases
after the intervention for surrogate index construction.
However, when firms have different long-term objectives,
there may not exist obvious short-term signals to use as
surrogates. Therefore, it is essential to develop a general
surrogate selection procedure and document potential
surrogate outcomes for various marketing applications.
For example, Han et al. (2021) proposes an estimation
method to quantify the percentage of the long-term treat-
ment effect that short-term surrogates can explain. Addi-
tionally, Yoganarasimhan et al. (2023) provides evidence
that short-term conversion on subscription can be an
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effective low-variance proxy for long-run revenue, and
Wang et al. (2022) documents potential surrogate out-
comes for the long-term user experience in the context of
content recommendation. Future research could focus on
identifying appropriate surrogate outcomes for different
marketing contexts and developing methods to evaluate
the effectiveness of these surrogates in improving target-
ing performance.

Third, there may be scenarios where no surrogate out-
come is available for noise reduction, such as when the
objective is to directly optimize a short-term outcome
with significant unexplained variations. In such cases,
future research could explore the development of
new CATE models that are more resilient to noise in the
outcome variable. For example, Huang and Ascarza
(2023) proposes an iterative error correction procedure
to improve CATE estimation when the data are inten-
tionally masked by large noise for privacy protection.
Furthermore, it would be worthwhile to investigate how
to incorporate the estimation uncertainty of CATEs into
the targeting strategy and determine whether it can fur-
ther enhance the profitability of a marketing campaign.

Finally, the proposed imputation strategy relies on
state-of-the-art machine learning methods to predict
future purchases based on observed short-term beha-
viors. However, machine learning models may also
overfit large unexplained variations in historical data,
resulting in inaccurate long-term outcome predic-
tions. Future research could explore alternative impu-
tation strategies that are more robust to data noise. For
instance, Padilla et al. (2023) proposes a Bayesian
approach to predict purchase likelihood by incorpo-
rating information from intermediate stages in the
customer journey. It would be worthwhile to investi-
gate whether their approach can further mitigate the
impact of unexplained variations in historical data.
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Endnotes

T We use 10 weeks to align with the time frame used by the focal firm
when considering future purchases for newly acquired customers.

2 Figures 2 and 3 present the results of using the X-learner to esti-
mate CATE. The results are consistent across various CATE models,
including Causal Forest, T-learner, and S-learner, as detailed in
Online Appendix D.4.

8 This proposition also holds in the case where the firm aims to tar-
get customers with treatment effects larger than a certain threshold.
See Online Appendix A for details.

# Simester et al. (2022) propose an approach to calculate the sample
size required to train and certify targeting policies.

5 To provide additional context, in approximately 60% of the boot-
strap replications, the default method of R-lasso generated the same
CATE prediction (which was equal to the ATE) for all consumers.
This suggests a notable underestimation of the heterogeneity in
treatment effects.

6 Unlike in simulations, we cannot substantially increase the sample
size in a real-world context due to the finite number of customers
the firm could acquire over time. Furthermore, we omit the results
of the R-learner with lasso regularization, as it yielded identical
CATE predictions for all customers. This result was expected, con-
sidering the limited sample size and the substantial unexplained
variations present in the data.

7 We use random forest and BG/NBD to construct those surrogate
models, which are described in detail in Online Appendix D.1.

8 We estimate this quantity in each iteration using the probability
forest implemented by the grf package.

? We did not observe a significant difference in AOV between the
treatment and control groups (mean difference = $0.05 with a p value
of 0.88).

"We present the results when using a T-learner to compute
CATEs. For robustness, results from alternative CATE estimation
methods are provided in Online Appendix D.6, which show consis-
tent findings.
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